Traduzido por Pedro Augusto.
Quão longe estão as estrelas? Explore na sua sala de aula como medem os astrónomos as distâncias no espaço.
Gaia, com a Via Láctea de
fundo
A imagem é cortesia da ESA /
ATG medialab; imagem de
fundo: ESO / S Brunier
Olhe para fora da janela de um carro ou de um comboio em movimento e notará que a sua visão dos objetos se altera com a respetiva distância: os arbustos ou árvores próximos parecem passar a voar, enquanto uma árvore ou um edifício mais distante parecem deslocar-se muito mais devagar.
Esta aparente alteração da posição que depende da distância é chamada de paralaxe. Pode reproduzir o efeito fazendo um sinal com o polegar para cima em frente à sua cara e observando o polegar em primeiro lugar com o olho esquerdo (apenas) e depois apenas com o olho direito. Conforme altera os olhos, o seu polegar parece saltar de lado em relação às imagens de fundo – porque os seus dois olhos estão em posições ligeiramente diferentes. Agora estique o seu braço tão longe quanto este pode ir e, deslocando o polegar para mais próximo da sua cara, repita a experiência anterior: notará que a deslocação em posição aparente aumenta quando a distância entre o seu polegar e os seus olhos diminui.
Este efeito é já usado há séculos para a determinação de distâncias no espaçow1. Em meados do século XIX, os astrónomos usaram a paralaxe para determinar as primeiras distâncias estelares. Os topógrafos também usam esta forma de medição para desenharem mapas detalhados da superfície da Terra. Presentemente, o satélite Gaia da ESA, lançado em dezembro de 2013, está a medir paralaxes precisas para mais de um bilião de estrelas na nossa galáxia, a Via Láctea, aumentando a precisão de um fator de cerca de 200.
Neste artigo, descrevemos uma atividade que explora a forma como os astrónomos usam a paralaxe para medir distâncias interestelares, determinando a distância a uma ‘estrela’ colocada na sala de aula. Existe, ainda, um curto artigo na web sobre a história de medições de paralaxe, que pode descarregar da secção de material adicionalw1.
A atividade aqui descrita reproduz a geometria básica das medições de paralaxe, usando aparelhos simples para a medição de ângulos. Utilizámos esta atividade com sucesso, que leva de 30 a 45 minutos incluindo montagem, com estudantes de idades entre 13 e 17 anos. No próximo número do Science in School, vamos descrever um método fotográfico para efetivar medições de paralaxe que é ainda mais preciso e astronomicamente realista.
Para esta atividade, vai precisar de um instrumento para medir ângulos entre linhas-de-visão – um teodolito (ver figura 1), se existir um entre o equipamento de Matemática, Física ou Geografia da escola. Caso contrário, damos aqui instruções em como construir um aparelho de medições de ângulos semelhante, a partir de materiais facilmente disponíveis.
Se não tiver acesso a teodolitos pode improvisar construindo os aparelhos simples apresentados na figura 2. Para cada um (serão precisos dois) vai precisar de:
A montagem básica pode ser vista na figura 3. Para simplificar, fazemos todas as medições angulares no plano definido pelos pontos A, B e C, que deve ser paralelo ao chão.
Siga os passos para a montagem que se seguem, se estiver a utilizar teodolitos:
Alternativamente, se não estiver a usar teodolitos, siga os seguintes passos para contruir os aparelhos improvisados:
A sua tarefa agora é determinar a distância entre o seu ponto de observação e a estrela, fazendo todas as suas medições apenas na Terra. É claro que não pode simplesmente usar a fita métrica e esticá-la de B a A, uma vez que isso significaria deixar a Terra. Nós não conseguimos medir as distâncias a objetos astronómicos fora do nosso Sistema Solar voando até lá.
Em vez disso, vamos medir dois ângulos e o comprimento de um lado do triângulo ABC e a geometria vai-nos ajudar a descobrir o comprimento dos outros dois lados, AB e AC. Com o teodolito na posição B, podemos medir o ângulo ABC como segue:
Com os aparelhos improvisados, as mesmas medições angulares podem ser feitas como segue, em primeiro para o aparelho em B:
Agora sabe os ângulos de visão da estrela de duas posições diferentes da Terra e ainda a distância entre estas posições. Assim, como utilizamos estes resultados para determinar a distância à estrela? Primeiro, repare na geometria da situação, mostrada na figura 4.
Nesta disposição a posição A da estrela e as posições B e C do teodolito estão todas no mesmo plano horizontal e formam o triângulo ABC (diretamente visto de cima). Os ângulos b e g são os valores medidos dos ângulos ABC e ACB, respetivamente, e o comprimento b é a distância medida ao longo da linha-de-base entre B e C.
Utilizando as suas próprias medições, desenhe um diagrama em escala de um triângulo como este tão preciso quanto possível: uma escala de 1:50 numa folha A3 dá bons resultados. Depois, pode simplesmente medir as distâncias AB e AC do diagrama e convertê-las em distâncias reais de forma a determinar as distâncias B e C para a estrela A.
De forma a verificar os seus resultados, infrinja as regras! Viaje pelo ‘espaço’ e use a fita métrica para medir AB e BC.
Finalmente, discuta a precisão dos resultados obtidos com a medição de ângulos. Se tivessemos usado distâncias maiores como se alteraria esta precisão? e porquê?
Esperamos que os alunos gozem da sensação de descoberta a partir desta atividade e que fiquem com alguma ideia da forma como as medições de distâncias são feitas em Astronomiaw1. É claro que os procedimentos astronómicos reais utilizam métodos elaborados de forma a garantir a máxima precisão possível, já que as estrelas estão muito longe e os seus desvios de paralaxe são tão minúsculos. Mesmo o nosso mais próximo vizinho estelar fora do Sistema Solar (Proxima Centauri) está cerca de 100 000 vezes mais longe do que a mais longa distância que pode ser medida com uma linha-de-base a partir da Terra, isto é, duas vezes a distância entre a Terra e o Sol, se recolhermos imagens separadas de meio ano. Isto é como tentar detetar o desvio em paralaxe de um objeto a 100 quilómetros quando nos deslocamos um metro para o lado.