Ľudmila Onderová from PJ Šafárik University, Košice, Slovakia, introduces us to the use of black boxes in the physics classroom.
The idea behind using a black box in the classroom is for students to try to figure out its contents – prepared in advance by the teacher – without opening it. Once they have experimentally determined what is inside, the students can open the box to verify their hypothesis. An example of how to use black boxes to teach electric circuits, suitable for students aged 15-18, is described below. However, there are many possible uses for black boxes in the classroom, also for younger students and in other areas of physics.
I’ve had good experiences using this method both in the classroom and in the education of future physics teachers. Many teachers don’t seem to be familiar with it, yet it is actually very similar to problems you have to solve in real life. Besides, the experiment fosters the creativity of students, and black boxes are cheap and easy to build.
the black box
Images courtesy of Ľudmila Onderová
A removable tube top and flexible wires make it easy to reveal the components and the circuit inside the black box. You should make sure that the connection of elements inside the box is simple and easy to detect for the students. The outside appearance of the box is up to you; I wrap the tubes with a sheet of black paper.
You can create black boxes of different complexity – some of them enclosing only one electronic component (resistor, capacitor, diode, coil, etc.), others containing several components connected to form simple circuits (see Figure 4).
Once students have been introduced to the basics of DC and AC electric circuits, they can start experimenting with black boxes to apply what they have learned to the solution of a practical problem. They are given materials (listed below) to be used for determining the individual elements contained in a black box. They are informed in advance about all possible internal configurations of the boxes. In the first stage, each group of students receives five black boxes containing only one electronic element per box. In the next stage (not necessarily in the same lesson), they receive eight black boxes with either a simple or more complex configuration inside each one. Their task is to find out the contents using their experience and an algorithm they develop for analysis of the boxes.
contained in the the black boxes.
Click to enlarge image
Image courtesy of Ľudmila Onderová
In the second test, students tend to have problems not with determining simple elements, but with determining more complex circuits and distinguishing between a resistor, a thermistor and a bulb. They have to apply their theoretical knowledge and need to realise that it is necessary to change the voltage and, eventually, to draw a diagram to be able to determine the elements in the boxes correctly.
Manipulating black boxes is an attractive task for students to test their knowledge and enjoy their success. Some even try to find further opportunities to use this method in physics teaching themselves. Most importantly, students learn to use a systematic method of investigation. The black box experiment encourages students to ask and answer their own questions, express their predictions, test their hypotheses and communicate the results to their peers. Such an active method also helps to better understand the nature of science. In addition, this is also a good way to solve problems in real life, for example if you need to work out how a device (black box) works when you have lost the user manual.
A critical point in setting the task is the amount of information given on the possible structure of the box’s contents. The teacher needs to ensure that the students have sufficient previous knowledge and to give clear instructions on how to proceed. Fewer instructions provoke more creative thinking, but if not enough information is provided, students may feel overburdened by the task and lose interest.
Comments
More links to black boxes
For more black box ideas for teaching science, see the 2010 Science in School advent calendar: http://www.scienceinschool.org/advent2010/day1