Earthquakes, global climate or the placement of wind farms – with the help of geographic information systems, these can all be investigated dynamically in the classroom. Joseph Kerski describes how.
For more than 2500 years, people have been fascinated by geography, the study of our planet. Geography is also the science of spatial thinking – how phenomena interact and change over space, at the local, regional and global scale. Today, this spatial science is particularly significant, as issues such as climate change, biodiversity loss, sustainable agriculture, water quality and quantity, energy and natural hazards not only grow in importance but also affect our everyday lives. To grapple with these issues, we need to see patterns and trends at anything from a global scale to the level of a local community.
To investigate such trends, geographers turn to geographic information systems (GIS). Unlike traditional maps, GIS goes beyond static, two-dimensional objects: instead, individual maps can be manipulated and combined with other maps, charts, databases and multimedia.
The G in GIS represents geography – the map: for example, a 2D or 3D topographic map, a map of soil pH, ecosystems, or watersheds, or a satellite image. The I represents the information behind the map, which is stored in a database. For rivers, for example, the information could describe whether the river is perennial or intermittent, or how its conductivity or salinity varies with time or along its course. The S – the system – connects the map and the database. By selecting components on the map, the user simultaneously selects the associated attributes in the database (and vice versa), allowing them to be manipulated.
With the help of hundreds of GIS-specific tools, the data can be manipulated and combined in many different ways. For example, the proximity tool could find all of the earthquakes that occurred within 100 km of Frankfurt am Main, Germany, and the overlay tool could narrow the search down to those earthquakes that occurred under alluvial soil and that are on highly populated land.
In schools, GIS can be used not only in geography, but also in biology, chemistry, earth science, environmental science, history, mathematics and other subjects. It can help students at all levels to think critically and use real data, as well as appealing to visual learners.
A wide variety of topics can be explored: the relationships between people, climate, land use, vegetation, river systems, aquifers, land forms, soils, natural hazards and much more. For example, how will climate change affect global food production? What is the relationship between birth rate and life expectancy? How does acid mine drainage in a mountain range affect water quality downstream? How does the changing demography associated with smaller household size affect urban sprawl? What is the best location for new wind energy farms? How will a proposed retail centre affect community traffic patterns and land use?
GIS can be used in three ways.
Each of the methods has its advantages. Desktop software offers a more powerful analytical toolkit, whereas web-based GIS is easier to use and requires only a web browser.
Below are two examples of analyses with GIS that could be carried out at school.
Let us say that you have read an article stating that the Haiti earthquake and its aftershocks in January 2010 were unusual because they were large in magnitude and because earthquakes are rare in Haiti. You want to test whether this is true. This can be done with desktop GIS software and data downloaded from the Internet.
What do you notice about the spatial pattern of global earthquake locations? Why are earthquakes not distributed evenly around the world?
Why are some plate boundaries frequented by earthquakes while others are relatively quiet? Along what type of plate boundaries are the deepest earthquakes? And the shallowest? Why?
You will see that mid-ocean ridges have a moderate number of earthquakes that are less than 10 km deep, whereas subduction zones (where one plate sinks beneath the other) are associated with more frequent earthquakes that are both deeper and more intense.
Zoom to Haiti and you will see that the newspaper article was correct: most earthquakes in the region over the three-year period occurred in a wide, scattered pattern off the northeast coast of Hispaniola (shown by the purple dots in the image below) but the January and February 2010 earthquakes were focused in a narrow cluster on the western side of the island, in Haiti (shown by the yellow dots). Which earthquakes would you consider aftershocks, and why?
Further questions that the students could address include:
Another GIS investigation for the classroom would be to analyse world climates.
Why is the pattern of maximum temperatures for January different from that for July? From the map, can you see at what time of year it is summer in the northern hemisphere and when it is summer in the southern hemisphere? What influence does latitude have on temperature?
What is the difference between the minimum and maximum temperatures for July? Do any regions of the world experience daily temperature swings of more than 20°C? Where are these regions? What is the effect of the ocean on daily temperature swings and on the maximum temperatures around the world?
What effect does elevation have on temperature? Is elevation as important as latitude as a determinant of temperature?
What primary vegetation types cover Gabon, Oman and Japan? How is climate linked to vegetation? What is the predominant vegetation in regions that are more than 2000 m in elevation? Move your mouse until it rests on the Equator, and describe how the vegetation changes as you move across South America, Africa and south-east Asia along the Equator. How does vegetation and climate change as you move north along the Prime Meridian from Ghana to the UK?
Zoom in on the region where you live. Determine the daily temperature variations in January and July and compare the maximum temperatures for January and July for your region.
How does the temperature, precipitation, vegetation and elevation compare with other regions of the world? Is there another part of the world that experiences a similar climate, elevation and vegetation to your region? If so, where is it?
Comments
Spatial Mathematics Book published
Building on the science and mathematics connections I raised in the above article, I am pleased to announce the publication of a new book entitled Spatial Mathematics: Theory and Practice through Mapping:
http://www.crcpress.com/product/isbn/9781466505322
Authors: Sandra Arlinghaus and Joseph Kerski.
In my view this book represents the interweaving of Geography, GIS, and Mathematics.
Video explaining the book, from the authors:
http://www.youtube.com/watch?v=Z_jzibDi4iQ
Spatial mathematics and analysis, two different approaches to scholarship, yield different results and employ different tools. This book explores both approaches to looking at real world issues that have mathematics as a critical, but often unseen, component. Readers learn the mathematics required to consider the broad problem at hand, rather than learning mathematics according to the determination of a (perhaps) artificial curriculum. This format motivates readers to explore diverse realms in the worlds for geography and mathematics and in their interfaces.
Complete set of pre-publication reviews by Tobler, Batty, Goodchild, Donert, Hogrebe, Coulter, others:
http://www-personal.umich.edu/~sarhaus/SpatialMathematics/PreReviewsSM.pdf
--Joseph Kerski
Sounds like an interesting
Sounds like an interesting book, I probably should buy it.