Traducido por Mónica González.
Muchos de nosotros hemos corregido la posición de los dientes con ortodoncia. Pocos sabemos, sin embargo, que la ortodoncia requiere gran cantidad de ciencia fundamental e innovación.
Bot, origen de la imagen: Flickr
La mayoría de nosotros pensamos que la ortodoncia es una especie de ingeniería mecánica dentro de la boca con placas y alambres. Pero ¿cuántos de nosotros somos conscientes de las diferentes ciencias implicadas en este área de la odontología? Actualmente, los ortodoncistas tienen que entender y aplicar grandes dosis de ciencia especializada, desde la genética a la metalurgia.
Archives and Records
Administration; origen de la
imagen: Wikimedia Commons
La ortodoncia es la rama de la odontología que diagnostica y corrige irregularidades de dientes y mandíbulas. Se aplica para mucho más que una sonrisa de Hollywood perfecta; si empleamos las mandíbulas y los dientes para hablar y masticar, la ortodoncia se ocupa del impacto de la anatomía facial en esas funciones y la mejora cosmética.
Como ortodoncistas siempre estamos buscando las últimas ideas y técnicas en determinados ámbitos científicos para aplicarlos a nuestro trabajo. Algunos ejemplos figuran en la tabla 1. En este artículo examinaremos varias de estas áreas con detalle.
Genética | Necesitamos ser capaces de diagnosticar si un problema tiene una causa genética para un tratamiento más eficaz. |
El crecimiento y el desarrollo | Las caras cambian con la madurez y la edad por alteración en los tejidos del cuerpo. La comprensión de estos procesos nos permite influir positivamente en ellos. |
Fisiología | Cada persona es diferente en su forma de respirar, masticar, tragar y hablar. Función y forma están estrechamente relacionadas; estos procesos formarán parte del diagnóstico de cada paciente y de su plan de tratamiento (figura 1). |
Microbiología | La educación de nuestros pacientes para la salud oral y la eliminación de la placa ayuda a prevenir la caries dental y la enfermedad de las encías. |
Biomecánica | Aplicamos las leyes de la mecánica para ajustar la posición de los dientes. Tenemos que asegurarnos que que las fuerzas resultantes de nuestro trabajo sólo producen los movimientos necesarios. |
Metalurgia y Ciencia de Materiales | Además de metales utilizamos alginatos y siliconas para la toma de impresiones, composites y cemento ionómero de vidrio para el sellado y pegado, yeso para la fabricación de moldes y resinas para la creación de aparatos removibles. Tenemos que entender las propiedades físicas y químicas de cada material para utilizarlas de la mejor manera en cada paciente. |
Física | Muchas resinas ortodónticas pueden ser polimerizadas utilizando la luz. Disponemos de cuatro tipos principales de fuentes de luz para polimerización: lámparas halógenas, lámparas de arco de plasma, láser de iones de argón, y los diodos emisores de luz. |
Radiología | Las radiografías nos ayudan al diagnóstico de problemas complejos. Utilizamos muchos tipos diferentes de radiografías para proporcionar vistas desde diferentes ángulos (frontal, perfil o panorámica) y empleamos diferentes técnicas de imagen (escáneres, imágenes de resonancia magnética y tomografía computarizada de haz cónico). |
Algunos de los problemas que tratan los ortodoncistas tienen un origen genético (figura 2). Aunque la mayoría de estos son de menor importancia, otros resultan de anormalidades en el desarrollo de la cabeza y la cara antes del nacimientow1. En el embrión el desarrollo de estructuras faciales comienza con las células de la cresta neural que se forman en el cerebro. Estas células emigran para formar un tejido que se diferencia en osteoblastos, condroblastos y células odontogenéticas, que se desarrollan para formar los tejidos duros de la cabeza y el cuello - los huesos, cartílagos y dientes.
Durante este proceso, factores de señalización y de transcripción juegan un papel importante. Los factores de señalización permiten la comunicación intercelular, mientras que los factores de transcripción participan en la expresión genética. Por ejemplo, ahora se sabe que si el factor de señalización TGF-β está inactivo produce hendiduras palatalesw2 y malformaciones en el maxilar superior. Mutaciones en los receptores del factor de señalización FGF también ocasionan un gran número de anomalías craneofaciales.
Researchers are investigating
whether stem cells can be
encouraged to grow into
teeth.
Image courtesy of Nissim
Benvenisty; image source:
Wikimedia Commons
Otro ejemplo son los factores de transcripción asociados a los genes homeobox. Estos factores son especialmente importantes para permitir que las células de la cresta neural originen las estructuras esqueléticas de la cabeza y la cara; defectos en la transcripción de estos genes origina anormalidades en el desarrollo facial.
Otro ejemplo de la importancia de la biología molecular en ortodoncia es el reciente descubrimiento que la pulpa dental (el área de tejido conectivo en el centro de un diente) contiene células madre adultas, inducibles para formar otros tipos de células. Así, después de la extracción o caída de un diente, las células madre pueden ser cultivadas y almacenadas para un tratamiento futuro. Las células madre ya se emplean en oncología y otras aplicaciones podrían ser inminentes. Por ejemplo, ya se estudia su utilización para formar un sustituto natural de un diente que falta.
La cantidad de fuerza necesaria para mover un diente depende de su tamaño y el tipo de movimiento (giro o deslizamiento). La fuerza en movimiento también necesita un anclaje para el que se seleccionan un grupo de dientes y aparatos (figuras 3 y 4).
Medio: Fase temprana en el tratamiento, que muestra el vacío dejado por la extracción del diente.
Derecha: La brecha se ha cerrado con éxito.
Haga clic sobre la imagen para ampliarla.
Imágenes cortesía de Sophie y Georges Rozencweig
Como ortodoncistas nuestra tarea consiste en decidir la mejor combinación de fuerzas y anclaje para lograr movimientos correctos, sin efectos adversos. Revisamos cada etapa del tratamiento para asegurarnos que esto está sucediendo, y si no, cambiar el plan de tratamiento.
En ortodoncia tradicional aparatos como cascos y elásticos intraorales se utilizan para reforzar el anclaje, que implica una gran cooperación del paciente. En la actualidad se utilizan mini-tornillos de titanio (figura 4).
los alambres, actuando como
un motor para guiar y mover
los dientes. Sin el alambre los
dientes no se moverían.
Imagen cortesía de bluebike;
origen de la imagen: Flickr
Las fuerzas en ortodoncia provienen de los arcos de alambre (figura 5). Al comienzo del tratamiento, los cables tienen que ser bastante elásticos para iniciar el movimiento de dientes individuales. Más tarde, los cables tienen que ser más rígidos para asegurar la estabilidad, mientras que un bloque entero de dientes se mueve.
Los ortodoncistas pueden elegir alambres de distintos materiales metálicos:
estaría completa sin haber
explorado todos los rincones
de la boca con un pequeño
espejo circular.
Imagen cortesía de ben
matthews :::; origen de la
imagen: Flickr
Como puede verse, los ortodoncistas necesitan ser buenos científicos todo el año para mantenerse al día con el conocimiento cambiante y las innovaciones tecnológicas en su disciplina. Por lo tanto, si un estudiante en vuestra clase pierde una clase de ciencias por una cita con el ortodoncista, no os preocupéis, porque podría ser la oportunidad perfecta para aprender los últimos hallazgos de la biología molecular o, servir de inspiración a un científico de materiales en potencia.
Por ejemplo, cómo funcionan los alambres o una breve historia de la ortodoncia.
Bernardini F et al. (2012) Beeswax as dental filling on a Neolithic human tooth. PLOS One 7(9): e44904. doi: 10.1371/journal.pone.0044904
PLOS One es una revista científica de acceso libre y consulta gratuita; podéis utilizarla para el artículo anterior u otros de vuestro interés.
Barras C (2012) Oldest dental filling is found in a Stone Age tooth. New Scientist.
Douglas P, Garley M (2010) Química y luz. Science in School 14.
Hadjimarcou M (2009) Review of Potent Biology: Stem Cells, Cloning, and Regeneration. Science in School 11: 92.