
1www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit

Numerous small, inexpensive single-board computers (SBCs)
have been developed to get students interested in coding
and computer science. A recent entry – the BBC micro:bit –
has broad application in various other subject areas, partic-
ularly science classrooms.

Always wanted to do coding with your students but not sure where to start?
Learn how with this step-by-step guide to create a timer using a micro:bit computer.

ISSUE 61 – February 2023 Topics Coding | Engineering | General science | Mathematics

Introducing block coding: using the
BBC micro:bit in the science classroom
G. Michael Bowen, Susan German, Steven Khan

This article is a brief introduction to coding the mi-
cro:bit, with step-by-step instructions for 11–16-year-old
students to use block code to create a tool (a timer) that
can be used in science investigations. The coding activi-
ty should take 45 min or less.

Figure 1: Front and back of micro:bit (version 1)
Image courtesy of G. Michael Bowen

Les Pounder, CC BY-SA 2.0

https://www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit/
https://commons.wikimedia.org/wiki/File:BBC_micro_bit_(25074666452).jpg
https://creativecommons.org/licenses/by-sa/2.0

2www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit

Issue 61 – February 2023

Notes on programming the micro:bit
The browser-based programming tool available for the
 micro:bit has a graphical micro:bit emulator on the left,
block code programming options near the centre, and
the programming area where code blocks are placed on
the right (figure 3). More advanced users can program the
micro:bit using text-based languages, such as Javascript
or Python (in the MakeCode interface), and there are also
other programming environments, such as C and Scratch.

Figure 3: Home screen of the MakeCode programming tool in the browser
Image courtesy of G. Michael Bowen

micro:bit
The micro:bit was created by a consortium of companies to
develop a small, inexpensive computer that could be easily
used by middle-school students. micro:bits are now used
by students around the world, and in some countries (such
as the UK and Canada) they are actively promoted for use in
schools by education authorities.

Image: Aruld/Wikipedia, CC BY-SA 4.0

Only slightly larger than a pack of matches, the easily pro-
grammable micro:bit costs about €25. Apart from the low
price, the micro:bit has at least three other features that
make it particularly appealing to a middle-school teacher:
1) The block code programming tool, MakeCode, is avail-

able online, is free of cost, runs in a web browser, and is
graphical and easy to use (it is similar to Scratch, which
many students also learn). The micro:bit is plugged into
a computer using a micro-USB cable, and programs can
be saved directly to it, since it appears as an external
drive. The programming tool includes a graphical micro:bit
emulator, which allows students to test their code with
a browser before they use it with the micro:bit. This also
allows teachers to use the programs we describe here
without having a micro:bit.

2) Micro:bits have several built-in sensors (compass/
magnetometer, accelerometer, thermometer, light
detector), two input buttons, and a 5 × 5 light-emitting
diode (LED) matrix output screen, allowing the micro:bit
to be used for science investigations right out of the box
(see figure 1). The recently released version 2 micro:bit
also has a microphone, a small speaker, a touch-sensitive
area/switch, an LED power indicator, and can be powered
off. The programming code in this article will work with
either version.

3) The micro:bit is easily expandable. Add-ons can be
 attached using alligator clips or by using an adapter that
allows more complex circuits, sensors, and screens to be
attached to and controlled by it (figure 2). Many robot and
science, technology, engineering, and mathematics (STEM)
sensor kits are also available.

Figure 2: Alligator clips (left) to add devices and expansion
boards (right) to add devices/components
Image courtesy of G. Michael Bowen

New micro:bits initially run a short, preinstalled, introducto-
ry program that familiarizes the user with the input buttons,
the LED matrix, and the accelerometer (which detects mo-
tion and tilting) when you first attach it to a power source.
[see https://youtu.be/HYLDzqWb9Xs for version 1]

https://www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit/
https://makecode.microbit.org/
http://scratch.mit.edu
https://commons.wikimedia.org/wiki/File:BBC_Micro_Bit_with_original_Packaging.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://makecode.microbit.org/

3www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit

Issue 61 – February 2023

To demonstrate the basics of coding, we have created a pro-
gram using coloured block code to create a timer that could
be used in science inquiry investigations.

For this task, the micro:bit accepts inputs (in this case,
 buttons A and B being pressed), follows the instructions of
the program and processes the information recorded when
these inputs are pressed, and will then provide output on the
5 × 5 LED screen.

When you create a program, you need to first make design
decisions about what inputs are needed, how those inputs
will be processed, and what outputs will occur. Then you can
decide how the code will accomplish them.

There are many ways to design a timer tool and to create
the code for the micro:bit, and we present one example.
We based our approach on the following requirements and
 considerations.

Requirements
 ⦁ Indicators on the 5 × 5 matrix to show that the program

has started properly, when the program is ready for ini-
tial input, and when the timer has started

 ⦁ Inputs to start and stop the timer
 ⦁ An input to show the output (i.e. elapsed time)
 ⦁ An input to reset the timer

Considerations
 ⦁ There are only three input button options

(button A, button B, button A+B)
 ⦁ The 5 × 5 matrix can only show one number or letter at

a time – scrolling is slow

Programming a timer
The timer code uses blocks for inputs, outputs, and variables.
Code for the timer also includes what is called a conditional
statement (if x, then do y; otherwise, do z) and formats the
numeric output to include units.

The timer needs to perform four functions: 1) start time, 2)
stop time, 3) show elapsed time, and 4) reset. However, there
are only three button input options, so we need to use one
button for two functions. This is done by defining three vari-
ables and using one button as a start/stop toggle.

We decided to both start and stop the timer by pressing but-
ton A. Variables are created to allow button A to be used to
toggle the timer code on and off (variable ‘timer’) and to re-
cord the start and finish time. The elapsed time is displayed

by pressing button B, which results in the elapsed time being
scrolled across the 5 × 5 LED matrix.

<CODING TIP>
A variable is essentially a named storage container,
and you create them under the ‘Variables’ menu. In this
program the variables all hold number values.

The timer program itself has four columns of code instruc-
tions, which are individually described below.

Materials
 ⦁ Laptops/Chromebooks for each pair of students
 ⦁ micro:bit for each pair
 ⦁ Micro-USB cable to connect the micro:bit to the computer

Procedure
The timer relies on the ‘running time (ms)’ function that is built
into MakeCode. It counts the time in milliseconds since the
micro:bit was started and is reset by restarting the micro:bit
(or by pressing the reboot button on the back). Below are de-
scriptions of the final code. Detailed instructions for the timer
program are provided in the supporting material.

Code block 1: Starting the program
and initializing variables

Figure 4: Starting the program; initializing the variables
Image courtesy of G. Michael Bowen

https://www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit/
https://www.scienceinschool.org/wp-content/uploads/2023/01/Detailed-instructions.pdf
https://www.scienceinschool.org/wp-content/uploads/2023/01/Detailed-instructions.pdf

4www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit

Issue 61 – February 2023

The purpose of this set of code blocks is to set the starting
value of the variables that have been created and to tell the
user that the micro:bit is ready to accept input.
1. The ‘on start’ block runs first when the micro:bit is

 started. The code blocks in the on start ‘jaw’ are the first
to be run when the micro:bit is turned on.

2. The ‘show string’ block holds the text that scrolls across
the 5 × 5 LED matrix when the program starts. It is
optional. Some alternative timer code modifications
are provided in the supporting material.

3. There are three variables that have been created, which
are named ‘start time’, ‘stop time’, and ‘timer’.

4. The red ‘set’ block is dragged over to the on start block
three times, and each one is set to one of the three vari-
ables. The starting value for each is set to zero. These
‘set’ blocks initialize the three variables. It is important
to initialize variables at the start of a program.

5. The two ‘show led’ blocks show that the program has
started well (the check mark) and is then waiting for
input (top-left LED is lit; figure 4).

Code block 2: Starting and stopping
the timer function

Figure 5: Recording the start and stop times in variables
Image courtesy of G. Michael Bowen

The purpose of this set of code blocks is to put the starting
time and finishing time into two different variables, so that
the elapsed time can be calculated. This code toggles the val-
ue of the ‘timer’ variable between 0 and 1, so that button A
can be used to both start and stop the timer using a ‘condi-
tional’ statement. The bottom-centre LED being turned on lets
you know there is a recorded elapsed time to see (figure 5).

1. The ‘on button’ block has jaws that hold the code blocks
that are run when button A is pressed.

2. The ‘change timer’ and ‘set timer’ blocks toggle the value
of the variable timer.

3. The ‘if’ block has two jaws with different code blocks in
each of them. If the timer variable has one value, then
it does one thing; if it does not have that particular
value, then it does the other thing. This is known as a
conditional statement.

4. If the timer is being started by pressing button A, the
if block records the current running time in the ‘start
time’ variable, and the top-centre LED is turned on. If the
timer is already running and button A is pressed, then
the current running time is recorded in the ‘stop time’
variable, and the bottom-centre LED is turned on (and
the top-centre LED is turned off).

5. The bottom-centre LED being turned on lets the user
know that there is an elapsed time, which they can see
by pressing button B.

Code block 3: Calculate and show
elapsed time

Figure 6: Calculating and showing the elapsed time
Image courtesy of G. Michael Bowen

The purpose of this set of code blocks is to calculate and show
the elapsed time (figure 6). A decimal may also be shown
scrolling across the second row from the bottom if there are
fractions of seconds. Note: the micro:bit does not show trail-
ing zeroes, so an elapsed time of 3.40 s is shown as 3.4 s.
1. The ‘on button’ B code block runs the code inside its

jaws when button B is pressed.
2. The 5 × 5 matrix is cleared. The second code line in

the jaws is a series of embedded blocks that show the
elapsed time with the letter ‘s’ for the unit seconds. The
elapsed time is calculated by subtracting the starting
running time (recorded in variable ‘start time’) from
the running time recorded in variable ‘stop time’ when
button A is pressed the second time. This difference is

https://www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit/
https://www.scienceinschool.org/wp-content/uploads/2023/01/Timer-code-modifications.pdf

5www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit

Issue 61 – February 2023

then divided by 1000 to convert from milliseconds (i.e.
thousandths of a second) into seconds. To compensate
for how the ‘show’ block works, the calculated time in
seconds is then joined onto the letter ‘s’ before being
scrolled across the 5 × 5 LED matrix using ‘show string’.

3. After the elapsed time and units are scrolled across the
screen, the upper-left LED is turned ‘on’, indicating the
timer is ready to be used again.

<CODING TIP>
When a series of code blocks are embedded in each
other, then they are enacted in order from the inner-
most one to the outermost. In the case of showing the
elapsed time, this means the arithmetic difference is
calculated first, then it is divided by 1000, the letter ‘s’
is joined onto the number, and then that information is
shown using ‘show string’.

Code block 4:
Reset variables to zero

Figure 7: Reinitializing the variables
Image courtesy of G. Michael Bowen

The ‘button A+B’ block resets all of the variables to zero, so
the timer can be used again (figure 7). When this is done,
pressing button B shows a zero. If you do not reset the vari-
ables, you can get some funny-looking outputs the second
time you use the timer. Specifically, the second time you used
the program, if you pressed Button A only once and then But-
ton B to show output, you would see a negative time scroll
across the screen. A teacher could have their students not

put this block into their code, then demonstrate obtaining
a negative time and ask the students how they could create
code to stop that from happening.

Putting it all together
When you’ve entered all four blocks of code, your screen
should look something like this:

Figure 8: Timer program blocks of code
Image courtesy of G. Michael Bowen

We have provided a web-accessible version of the program
and there is also a YouTube video of the program being used.
Once you have your program coded and working using the em-
ulator, it is time to download the program onto the micro:bit.
Instructions on saving the hex code program to your computer
and the micro:bit are provided in the supporting material.

Discussion
This timer program is not as accurate as a dedicated stop-
watch would be, because running the code itself takes time
and the LEDs have a short time lag associated with them.
This is why rapidly pressing button A twice does not give a
time below 0.4 s. This could be compensated for by subtract-
ing 0.4 s from the time, or it could be discussed with students
and they could propose a solution. Removing the LED blocks
(in the second column of code) can also make the timer more
accurate. We have left the code with the ‘lag’ as an example
of a design decision that makes a trade-off related to per-
formance. There are advantages to allowing students to deal
with messy data.[1]

Extension activities
Various studies can be done using this micro:bit timer,
for example:

 ⦁ Rolling a toy car down a ramp at different angles and
measuring the time it takes for the car to get to the
 bottom of the ramp.

https://www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit/
https://makecode.microbit.org/_KDVFkudDkgmT
https://youtu.be/EnaLUiVjXmI
http://www.scienceinschool.org/wp-content/uploads/2023/01/Timer-code-modifications.pdf

6www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit

Issue 61 – February 2023

CC-BY

Text released under the Creative Commons CC-BY license.
Images: please see individual descriptions

 ⦁ Recording how long it takes to dissolve sugar at different
water temperatures.

Here are some simple programming challenge ideas that build
on the coding skills developed in this timer coding activity:

 ⦁ Use an external switch for the timer.
The micro:bit can function much like a Makey Makey.
You can connect an external switch made from various
conductive items to trigger the timer start and stop it
using the appropriate code for connecting it to pin 0/1/2
and ground (‘on pin’ found under ‘input’). This effectively
increases the number of input options available from
three to six.

 ⦁ Make a countdown timer instead of a count-up timer.
The timer we coded in class is a count-up timer, meaning
it will tell you how long an activity takes. Challenge: make
a timer that is a countdown timer, meaning the user can
input a time (e.g., 10 s) before a sound or LED output
signals zero time left.

Conclusion
Hopefully this coding example helps you to start out on your
own coding adventure with your students. We have tried to
introduce, in detail, the core programming functions that
help you use the micro:bit. Remember that this program (and
many others) can be run in the micro:bit emulator, so even
if your classroom doesn’t have micro:bits, you can still teach
your students about using them.

References

[1] Bowen GM, Bartley A (2020). Helping students make
sense of the “real world” data mess. Science Activities:
Projects and Curriculum Ideas in STEM Classrooms 57(4):
143–153. doi: 10.1080/00368121.2020.1843387

Resources

 ⦁ Explore the micro:bit website. Students can code online
as well as complete tutorials and courses. There are also
instructions for games, radio games, music, toys, science
projects, and much more.

 ⦁ Use the free block code programming tool MakeCode for
the activities in this article. This includes a graphical mi-
cro:bit emulator that teachers can use even if they don’t
have access to a micro:bit.

 ⦁ The micro:bit website also has an area for teachers
with curriculum guides to implement micro:bits in their
respective classrooms.

 ⦁ Discover more affordable inquiry and project-based
activities that enable students to use data in meaningful
ways.

 ⦁ Explore this website detailing the experiences of a
 science teacher using micro:bits in the classroom.

 ⦁ Follow these teacher tutorials produced by Hackster in
collaboration with micro:bit to provide three introductory
tutorials for teachers. In particular, the first two are good
introductory overviews of how the micro:bit works.

 – Basics for Teachers Part 1: The hardware

 – Basics for Teachers Part 2:
Programming with Javascript blocks

 – Programming the micro:bit with Python for teachers

 ⦁ Combine physics, programming, and art and design with
this creative project: Gajić B et al. (2022) Design and build
a smart lamp. Science in School 60.

G. Michael Bowen (Mount Saint Vincent University,
Halifax, Canada) is a STEM methods instructor in an
education faculty who teaches his elementary teacher
candidates to use micro:bits.

Susan German is a former middle-school teacher (Halls-
ville School District) who used micro:bits in her science
classroom. She recently moved into an administrative
role in her state promoting STEM and coding in schools.

Steven Khan (Brock University) is a mathematics
 methods instructor.

AUTHOR BIOGRAPHY

https://www.scienceinschool.org/article/2023/introducing-block-coding-using-microbit/
https://www.scienceinschool.org/copyright/
https://doi.org/10.1080/00368121.2020.1843387
https://doi.org/10.1080/00368121.2020.1843387
https://makecode.microbit.org/
https://makecode.microbit.org/
https://microbit.org/teach/for-teachers/
https://www.microsoft.com/en-us/education/education-workshop/default.aspx
https://www.microsoft.com/en-us/education/education-workshop/default.aspx
https://sites.google.com/view/microbitofthings/16-science
https://youtu.be/RkWDYTx_mg4
https://youtu.be/XYOrlpON72I
https://youtu.be/-z87k9_CnoA
https://www.scienceinschool.org/article/2022/design-build-smart-lamp/
https://www.scienceinschool.org/article/2022/design-build-smart-lamp/

