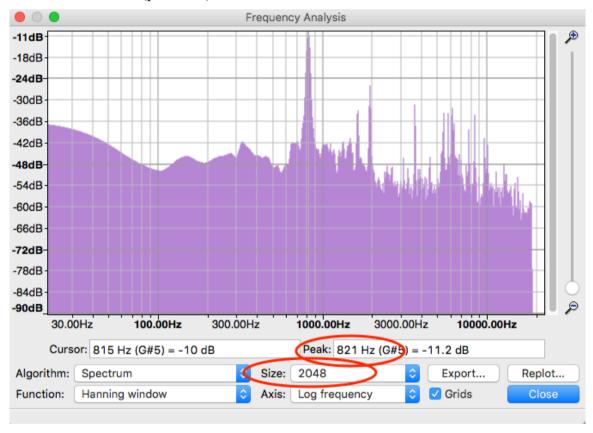

Instrucciones y hojas de ejercicios: ¿Quién asesinó a Sir Ernest? Resuelve el misterio con huellas espectrales

Traducido por Lucas Baeyens.

Acoustic spectra

Instrucciones para utilizar Audacity

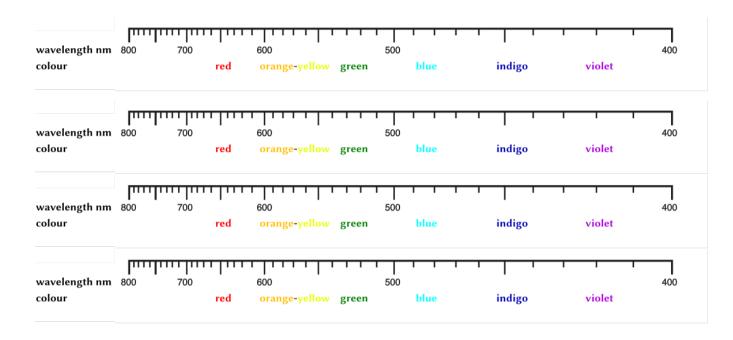
- 1. Descarga el programa en www.audacityteam.org
- 2. Si quieres analizar un archivo de audio, ábrelo en Audacity
- 3. Si quieres grabar tus propios sonidos, configura la "Frecuencia del proyecto" (abajo a la izquierda) en 8000 Hz y graba el sonid del cristal utilizando el botón de "record" y "stop"



Material adicional para:

Hollweck E, Almer J (2017) ¿Quién asesinó a Sir Ernest? Resuelve el misterio con huellas espectrales. *Science in School* **40**. www.scienceinschool.org/2017/issue40/murder

- 4. Destaca con el ratón la parte que quieras analizar y bajo la pestaña "Analizar", selecciona "Análisis de espectro.
- 5. Establece el tamaño (precisión) en 2048.


- 6. Con ayuda del cursor, busca las frecuencias de cada pico y anótalas
- 7. Traza un espectro de frecuencia simplificado para el póster grupal.

Material adicional para:

Detectives químicos

Registra la longitud de onda y color de cada catión.

Rellena los huecos:

Los cationes metálicos y los átomos del m	etal emiten con un
característico cuando son	(o están excitados eléctricamente). Las luces de
longitud de onda corta (p.ej. azules) son m	nás energéticas que las luces
(p.ej. rojas). Un electrón situado en la cort	eza es excitado mediante la conversión de energía
calorífica desde un estado	a un estado excitado. Entonces, el electrón vuelve
a su estado base mediante la emisión de en	nergía lumínica. Elión de la sal puede detectarse
mediante el análisis espectral del color de	la llama.

Material adicional para:

Registra los resultados del ensayo a la llama en la tabla:

Sal	Catión	Anión	Fórmula química	Color de la llama
Cloruro de litio				
Cloruro de sodio				
Cloruro de potasio				
Carbonato de calcio				

1.	Utiliza los resultac	dos anotados	en la	tabla p	ara deteri	mınar qué	sales se	utilizaron	para	las
	mezclas				2					

Ledes y voltajes

Determina el voltaje mínimo para cada led y anota el color

Color de led	Voltaje mínimo requerido		

Respuestas

Detectives químicos

Los cationes metálicos y los átomos del metal emiten luz con un color característico cuando son calentados (o están excitados eléctricamente). Las luces de longitud de onda corta (p.ej. azules) son más energéticas que las luces de longitud de onda larga (p.ej. rojas). Un electrón situado en la corteza es excitado mediante la conversión de energía calorífica desde un estado base a un estado excitado. Entonces, el electrón vuelve a su estado base mediante la emisión de energía lumínica. El catión de la sal puede detectarse mediante el análisis espectral del color de la llama.

Salt	Cation	Anion	Chemical formula	Flame colour
Cloruro de litio	Li ⁺	Cl ⁻	LiCl	Carmín
Cloruro de sodio	Na ⁺	Cl ⁻	NaCl	Amarillo
Cloruro de potasio	K ⁺	Cl	KCl	Violeta
Carbonato de calcio	Ca ²⁺	CO_3^{2-}	CaCO ₃	Rojo ladrillo

1. Cloruro de sodio y carbonato de calcio 2. Cloruro de litio y cloruro de potasio