

Instructions and worksheets: Who murdered Sir Ernest? Solve the mystery with spectral fingerprints

Acoustic spectra

Instructions for using Audacity

- 1. Download the programme from www.audacityteam.org
- 2. If you are analysing an audio file, open the audio file in Audacity.
- 3. If you want to record your own sounds, set the 'Project Rate' (at the bottom left of the window) to 8000 Hz and record the sound of the glass using the record and stop buttons (circled).

Supporting material for:

4. Highlight the area you want to analyse, and under the 'Analyze' menu, select 'Plot Spectrum'.

5. Set the size (accuracy) to 2048.

- 6. Read the frequencies of each peak with the help of the cursor.
- 7. Draw the simplified frequency spectrum on your group poster.

Supporting material for:

Chemical detectives

Record the wavelength and colour of each cation from the flame tests.

wavelength nm colour	800	700	red	600 orange-ye	llow gre	500 een	blue		indigo	violet	400
wavelength nm colour	800	700	red	600 orange-ye	llow gre	500 500	blue		indigo	ı ı violet	400
wavelength nm colour	800 800	700	red	600 orange-ye	llow gre	500 500	blue	1 1	indigo	l l violet	400
wavelength nm colour	800 800	700	red	600 orange-ye	llow gre	500 500	blue		indigo	l l violet	400

Fill in the gaps:

Metallic cations and metal atoms emit ______ with a characteristic ______ when _____ (or electrically excited). Shortwave light (e.g. blue) is more energetic than _______ light (e.g. red). An electron of the atomic shell is raised ('excited') by the conversion of heat energy from its _______ into an excited state. Then the electron reverts to the ground state with the emission of light energy. The ______ ion of the salt can be detected by spectral analysis of the flame colour.

Supporting material for:

Record your results of the flame test in the table:

Salt	Cation	Anion	Chemical formula	Flame colour
Lithium chloride				
Sodium chloride				
Potassium chloride				
Calcium carbonate				

2._____

Use your results from the table above to determine the salts used in the mixed solutions:

1. _____

LEDs and voltages

Determine the minimum voltage for the operation of each LED and note the colour of the LED.

Colour of LED	Minimum voltage required			

Supporting material for:

Answers

Chemical detectives

Metallic cations and metal atoms emit light with a characteristic color when heated (or electrically excited). Shortwave light (e.g. blue) is more energetic than longwave light (e.g. red). An electron of the atomic shell is raised ('excited') by the conversion of heat energy from its ground state into an excited state. Then the electron reverts to the ground state with the emission of light energy. The cation of the salt can be detected by spectral analysis of the flame colour.

Salt	Cation	Anion	Chemical formula	Flame colour
Lithium chloride	Li ⁺	Cl	LiCl	Carmine
Sodium chloride	Na ⁺	Cl	NaCl	Yellow
Potassium chloride	\overline{K}^+	Cl	KCl	Violet
Calcium carbonate	Ca ²⁺	CO_{3}^{2-}	CaCO ₃	Brick red

1. Sodium chloride and calcium carbonate 2. Lithium chloride and potassium chloride

Supporting material for: