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Imagine stretching your arm out and looking at your thumb, 
first with one eye, then with the other. The apparent shift of 
your thumb with respect to the background is called parallax. 
The same principle applies if two different schools ‘look’ at 
the Moon: they will see it slightly shifted with respect to the 
stars in the background.

In this activity, schools in different continents pair up so 
students aged 16-19 can compare their observation of the 
Moon across distances and calculate Earth’s distance to it 
(figure 1). Equipped with only a good camera and a good 
knowledge of geometry, the observation takes approximately 
1 hour and the calculation 3 hours (establishing the 
partnership might take a little longer…).

Defining the right conditions
The overall observation plan for the activity is detailed in 
figure 1, where M is the Moon, depicted as a point because 
its size is very small compared to the distance calculated 
(approximately 1/100th).
As in many scientific endeavours, planning is key. In this 
case, in addition to defining the right conditions to make the 
observations, the teacher needs to determine what margin 
of error is acceptable: this is important so the pupils are not 
disappointed if they don’t find the exact distance. Below 
we list a number of important points to highlight when 
discussing the activity with the class, but also when setting 
up the partnership with another school. 

Geometry 
can take you 
to the Moon

Measure the distance from Earth to the Moon using 
high-school geometry and an international network of 
schools and observatories. 

Earth and Moon  
from space

Image courtesy of NASA

By Davide Cenadelli, Albino Carbognani, Andrea Bernagozzi and Cristina Olivotto
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Figure 1: A and B are two positions on Earth (two schools for example) as seen from above the pole; N is the 
middle between A and B; M is the Moon; MA and MB are the places where the Moon appears to be in the sky, 
as viewed from A and B, respectively; α is the parallax angle
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This article describes a 
nice way to bring together 
mathematics with other 
science subjects, such as 
physics. It shows how to 
calculate the distance to 
the Moon or even Mars by 
using your own data from 
camera images and from 
your partner institution (e.g. 
the parallax network). Using 
pure mathematics – or 
pure applied mathematics, 
since you are solving a real 
problem – you will get good 
results.

Because of its short but 
efficient introduction, this 
article can be used either by 
science or by mathematics 
teachers.

Gerd Vogt,  
Higher Secondary School 

for Environment and 
Economics, Yspertal, Austria

Figure 1 shows how two observers 
(A and B) will see the Moon, M, as 
being in two slightly different positions 
in the sky. While in practice the two 
observation points, A and B, M, and 
the centre of Earth, C, do not lie on the 
same plane, to simplify the calculations 
so that we can use planar trigonometry 
alone we assume that they do.

For that approximation to be as exact 
as possible, the two observation points 
need to be at the same longitude, and 
the Moon should be at its highest point 
(in culmination)w1 at the moment of the 
observation. This ideal situation is very 
difficult to obtain but we recommend 
that you stay as close to it as possible 
and that you are aware of the errors 
implied by sizeable deviations from 
such conditions. 

Moreover, if the Moon’s angle with the 
celestial equator (declination)w1 is equal 
to the average of the latitudes of A and 
B, ABM forms an isosceles triangle and 
this further simplifies the calculations.

Having the right sky in the 
background
You will also need at least two bright 
starsw1 (or planets) in the background to 
find the two apparent positions of the 
Moon, MA and MB.

Geometrical assumptions
Then we will consider that the two 
straight lines AMA and BMA are almost 

d) Observation conditions;

e) Atmospheric refraction;

f) Time synchronisation.

Errors due to d) and e) are not very 
important: our measurement is based 
upon large angles and so is not affected 
greatly by an imprecision of a few 
arcseconds. 

Time synchronisation (f) is not very 
important either because the Moon 
travels the equivalent of its own 
diameter in one hour, so an imperfect 
synchronisation of a few seconds (or 
even minutes) is not relevant. 

parallel, as are AMB and BMB. This 
would mean that the angles α ≈ α’ 
(figure 1). While not strictly true, this 
assumption is acceptable, as the pairs of 
lines converge far from both Earth and 
the Moon. Of course, this appears to be 
very far from true in figure 1, because it 
is not drawn to scale.

If we measure the angle α and the 
distance AB – known as the baseline – 
plus another angle in the triangle ABM, 
we can calculate all the other distances. 
Otherwise, we can make the triangle 
ABM become isosceles, and knowledge 
of α and AB is sufficient to calculate all 
the distances. 

A key point is that the baseline must be 
long enough, when compared to the 
distance we want to find, to prevent 
the parallax from becoming vanishingly 
small. For the Moon, a distance between 
the partner schools of around 1000 km 
is enough, but the larger it is, the better.

But there will still be errors…
Despite all the care that will go into 
choosing the best conditions, the 
measurements will not be perfect. The 
main sources of error are:

a) Imprecision in spotting the shift of 
the Moon in the two images, mainly 
because of overexposure of the 
Moon’s disk;

b) A, B, C and M not lying exactly in a 
plane;

c) Distortions due to camera lenses;
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The parallax network
We set up a network of schools, observatories and educators across the 
planet to undertake this measurement. It is made up of the following 
members:

• Mario Koch, teacher at the Friedrich-Schiller-Gymnasium in Weimar, 
Germany

• Noorali Jiwaji, physics lecturer at the Open University of Tanzania in 
Dar es Salaam, Tanzania

• Frank Oßwald, teacher at the Goethegymnasium in Weissenfels, 
Germany

• Matthias Penselin, teacher at Albert Schweitzer Gymnasium Crailsheim 
and at the House of Astronomy in Heidelberg, Germany

• Alexander GM Pietrow, Iosto Fodde and Jelle Mes, students from 
Leiden Observatory and members of the observing committee of the 
Leidsch Astronomisch Dispuut ‘F. Kaiser’, Leiden, Netherlands

• Elena Servida, teacher at Liceo Vittorio Veneto in Milan, Italy

• Brian Sheen, Roseland Observatory, St Austell, UK 

With this network, or their own, teachers can propose dates to carry out 
lunar observations to work out the distance from Earth to the Moon. 

The long distances between the schools in our network provide a 
sufficiently long baseline (distance AB) to make it possible to measure 
Earth’s distance from Mars in May 2016 (Cenadelli et al, 2009; Penselin et 
al, 2014). At that time, Earth will be situated between the Sun and Mars, 
and Mars will be almost at its closest possible distance to Earth, an ideal 
position for such observations.

If you would like to contact any part of this international network to 
perform measurements, please contact Davide Cenadelli at  
davide.cenadelli@unimi.it

Distortions due to camera lenses (c) 
can be reduced if a small angle of view 
is used, like the one provided by a 
telephoto lens. A normal camera lens 
introduces a larger, but still acceptable, 
error. In our case, that angle was not so 
small and we estimate it generated an 
imprecision of approximately 1-2%. 

Errors due to a) and b) are the most 
important and can account for an 
imprecision of 5-10% each. Together, 
they account for an overall error of 
about 10-20%. To reduce a) we must 
choose a long parallax baseline so 
that the shift of the Moon is as large 
as possible; to reduce b) we must 
properly choose places and moments for 
observations so that A, B, C and M lie in 
the same plane. If both conditions hold 
(for us, the first condition did but the 
second didn’t), the error can be reduced 
to a few percent.

Material
The only specific material necessary 
is a good camera to take photos of the 
Moon and the sky. A telephoto lens with 
a focal length of around 100–200 mm is 
the best choice, but a normal lens will 
also work if the bright stars or planets in 
the background are not very close to the 
Moon.

Culmination angle of a 
celestial body Im

age courtesy of Nicola Graf

North celestial pole

South celestial pole

South Pole

Equator

Celestial equator
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Figure 2: Superimposition of the 
two images taken on 2 February 
2015 at 20.02 UT, simultaneously 
by an observer in Cape Town and 
at OAVdA
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Procedure
1. Use the parallax network (see box) to find a school or 

observatory that is on a similar longitude to your school.

2. Note the latitude and longitude of the two partners  
(λ = latitude, l = longitude). Here, we use observations 
taken in Cape Town, South Africa, and at the Astronomical 
Observatory of the Autonomous Region of the Aosta Valley 
(OAVdA), Italy:  
OAVdA, Italy: (λI 45.78° N, lI 7.48° E) 
Cape Town, South Africa: (λS 33.93° S, lS 18.42° E)

3. Agree the exact dates and times for the Moon observations 
(it is better to plan for several dates, in case the weather 
is bad). The two observers above agreed to make a 
simultaneous observation on 2 February 2015 at 20.02 
UT. That evening there were two bright reference bodies, 
Jupiter and Procyon (α CMi), in the sky not far from the 
Moon, which could serve as reference points against 
which to measure the position of the Moon. 

 The best circumstances are when bright background 
planets or stars, such as Jupiter and Procyon, are visible in 
the Moon’s proximity, and ideally as close as possible to it 
so that a telephoto lens with a small field of view can be 
used. This helps to avoid the large perspective distortion 
effects typical of wide-field lenses.

4. On the chosen date, all participants with clear skies 
should take several images of the Moon with a camera, 
following the predefined time schedule. The images need 
to show as clearly as possible the Moon and the two bright 
reference bodies. They should be captured with different 
exposure times, in order to choose the best compromise 
between a not overwhemingly bright Moon and yet visible 
background stars. 

5. Superimpose the images from two different observers into 
a single image, as in figure 2.
•  Measure the distance from Jupiter to Procyon on one 

image, and rescale the other image to match that dis-
tance so that both images are on the same scale;

• Superimpose the images and mark the position of the 
Moon as seen from both schools on the same image;

• Measure the shift of the centre of the Moon.

6. Calculate the parallax baseline, AB, as shown in figure 1.

 The angle, δ, between the two observers A and B can be 
calculated as follows (Roy & Clarcke (1977):

   cos δ = sin λI sin λS + cos λI cos λS cos(lI − lS ) 

  = −sin (45.78°) sin (33.93°) + cos (45.78°) cos   
    (33.93°) cos (10.94°)  

  = 0.1681 

 Thus δ  = 80.32°                    (1)            

Jupiter

Procyon

Moon from Cape Town

Moon from OAVdA
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If we assume that Earth is perfectly spherical and its radius is 
6367 km, the baseline AB is given by:

            AB = 2BN

  = 2(CB * sin (δ/2))

  = 2 × 6367 km × sin (80.32°/2)

  = 8212 km             (2)

7. Calculate the parallax angle, α.

 By simply using a ruler, we can estimate that the shift of 
the Moon that we observed (figure 2) is about 2.4 lunar 
diameters. As seen from Earth, the lunar diameter subtends 
an angle of 0.5°; that is, if we draw two lines from the eye 
of an observer to the extremes of the lunar diameter, the 
angle between the lines is 0.5°. 

 Therefore if one lunar diameter corresponds to 0.5° and 
the apparent shift of the Moon we observed is 2.4 lunar 
diameters, then:

 α = 2.4 * 0.5 = 1.2°

8. Calculate the distance between the Moon and the centre 
of the Earth, CM.  
We will calculate CM in two cases. In both cases we 
assume that A, B, M and C lie in the same plane.

 Case 1: ABM is an isosceles triangle

 In this case, the angles BAM and ABM are equal, and:

  CM  = CN+NM 

  = CAcos

  
= 4 866 km + 392 080 km 

  = 396 900 km                                (3)

The Moon and Earth as seen from the International Space Station

Image courtesy of NASA

δ

Figure 3: Close-up of the section of figure 1 showing the space between Earth 
and the Moon, and the angles β and γ

Image courtesy of the authors
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 The known distance at the time of measurementw1 was  
397 900 km, so we obtained a value that is under-
estimated by a mere 0.3%. Because of the approximations 
we used, this accuracy was partly a matter of luck.

 Case 2: ABM is not an isosceles triangle

 If we drop the assumption that AMB is an isosceles 
triangle, we need to know the value of another angle, such 
as BAM. BAM is equal to the sum of β, i.e. the altitude of 
the Moon above the horizon from A, and γ (see figure 3). β 
can be measured with proper equipment or, in its absence, 
can be taken to be almost equal to the altitudew1 of one of 
the reference stars or planets we used to measure the shift 
of the Moon. For Procyon, we had β = 39.3°. 

 We can calculate γ using the value for δ that we calculated 
earlier and the geometry rule that says:  
γ = δ/2.

 It follows that BAM = β + γ = 79.5°. 

 Finally, if we apply the law of sines to triangle ANM, we 
have:

 

 
→NM = AN ≈ 385 536 km                (4)

 and hence:

 CM  ≈ CN + NM 

  = CAcos 
 
+ NM 

  = 4 866km + 385 536 km ≈ 390 400 km            (5)

 Even without the approximation, this result is still realistic 
and only 1.9% less than the known value.
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