
© 2006 Nature Publishing Group 

 

Proteome survey reveals modularity of
the yeast cell machinery
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Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here
we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass
spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified
several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the
composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes,
of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a
diversification of potential functions. Support for this modular organization of the proteome comes from integration with
available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions.
This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for
biological data integration and modelling.

Genomes are remarkable in that they encode most of the functions
necessary for their interpretation and propagation1. However, many
principles as to how individual gene products form the structures
required for biological activity are still unknown. Biological processes,
such as the cell cycle and replication, require precise organization of
molecules in time and space. Complexes are among the fundamental
units of macromolecular organization2. They are thought to assemble
in a particular order, and often require energy-driven conformational
changes, specific post-translational modifications or chaperone assist-
ance for proper formation3. Their composition is also known to vary
according to cellular requirements.

Affinity purification methods are well suited for studying com-
plexes under near-physiological conditions4,5. They allow macromol-
ecules physically associated with a tagged bait to be retrieved and
identified by mass spectrometry6,7. These methods have been applied
as large-scale screens in prokaryotic and eukaryotic cells, and have led
to a growing collection of cellular machines8–11 that, in combination
with large-scale yeast two-hybrid studies12,13, are powerful integrators
of additional biological data14–16. However, in the absence of a
genome-wide screen, where many complexes are retrieved repeatedly
through a ‘reverse purification’ process, assignment of a component
to a particular complex relied heavily on experimental stringency and
arbitrary thresholds. Here we report the first genome-wide screen for
complexes to investigate the underlying organizational principles of
the eukaryotic cellular machinery.

Genome-wide characterization of complexes

We applied the tandem-affinity-purification method coupled to

mass spectrometry (TAP–MS)6–8 to all 6,466 ORFs of Saccharomyces
cerevisiae as annotated in 2002 (refs 17, 18; Fig. 1 and Supplementary
Information). We employed standardized protocols and successfully
purified 1,993 unique TAP-fusion proteins, of which 88% retrieved at
least one partner (Fig. 1; Supplementary Table S1). From all purifi-
cations, we processed 52,000 samples for mass spectrometry and
identified 36,000 proteins, of which 2,760 were distinct (Fig. 1;
Supplementary Figs S2–S5). These represent about 60% of the
estimated proteome for exponentially growing yeast19–21, and cover
all functional classes and subcellular localizations. The absolute
abundances of the identified proteins show a wide range, from 32
to 500,000 copies per cell19, although coverage varied considerably,
being highest for the most abundant proteins (.16,000 copies per
cell: 80% coverage), and lowest for the rarest proteins (,500 copies:
40% coverage) (Supplementary Fig. S1). We measured reproduci-
bility by performing 139 purifications in duplicate (99 soluble; 40
membrane), and found that, on average, 69% of recovered proteins
were common to both, giving an approximation of false-positive/
negative rates within the raw data. However, as complexes are
retrieved in several purifications, interactions observed repeatedly
are more likely to be correct (see below).

The purification data contains 73% of known complexes from the
Munich Information Center for Protein Sequences (MIPS) data-
base22 (217 complexes) and our own literature mining (62 com-
plexes). We found no evidence for 74 known complexes, possibly
because they may not assemble under our growth conditions or
because the tag interferes with complex assembly8. This is the case for
the partially recovered CCT (chaperonin-containing tailless complex
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Schumannstrasse 21/22, 10117 Berlin, Germany. 4Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria. †Present address:
EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
*These authors contributed equally to this work.

Vol 440|30 March 2006|doi:10.1038/nature04532

631



© 2006 Nature Publishing Group 

 

polypeptide 1) complex—the carboxy termini of the eight subunits
in the ring-like core of the complex lie on interaction interfaces23.
However, these situations could often be rescued: 30% of TAP-tagged
proteins that we could not purify were detected in purifications using
other complex components.

We used a modified purification procedure for membrane proteins
and successfully purified 340 of the 628 that were tagged. For
example, we retrieved the Q/t-SNARE complex, including both
integral membrane components of the trimeric receptor (Use1,
Sec20 and Ufe1) and the peripheral membrane machinery (Dsl1,
Sec39, Tip20) required for stability24. We also detected novel links
such as that between the Akr1 palmitoyl transferase (a six-transmem-
brane-segment protein) and Ste4 (the Gb subunit of the pheromone
receptor-coupled G protein), which is consistent with genetic evi-
dence25 and supports a role for protein acylation in the pheromone
response.

De novo definition of protein complexes

The proportion of new proteins identified per purification dropped
asymptotically during the progression of the screen, suggesting that
the procedure was to near saturation (Supplementary Fig. S6a). We
also observed that 64% of known complexes22 were retrieved several
times resulting in a high coverage of known components (Sup-
plementary Fig. S6b). We exploited this redundancy to define
complexes computationally. Current approaches for defining com-
plexes from binary interactions26 were not deemed appropriate as
these are not directly inferable from purifications. We also explicitly
avoided the incorporation of prior knowledge to circumvent any bias
towards well-studied proteins.

We first derived a ‘socio-affinity’ index (see the Methods) that
quantifies the propensity of proteins to form partnerships. It
measures the log-odds of the number of times two proteins are
observed together, relative to what would be expected from their
frequency in the data set, and encompasses both the ‘spoke’ and the
‘matrix’ models for assigning binary interactions within purifi-
cations. The index accounts for the frequency of proteins within

the data set and thus naturally discriminates true from spurious
interactions involving very promiscuous partners. For instance,
Vma2, which was seen in 552 purifications and would have been
ignored under previous high-frequency filtering strategies8,9, showed
high indices only with proteins it is known to associate with (Vma5,
Vma6, Vma10 and Rav1). Generally, pairs with socio-affinity indices
below 5 should be considered with caution (reproducibility ,70%),
though those above 5 are more reliable (89%). These indices capture
some biochemical properties of protein–protein interactions: there is
a tentative correlation with the few dissociation constants available in
the literature (P , 0.08) and protein pairs with high socio-affinity
indices are more likely to be in direct contact as measured either by
three-dimensional structures or the yeast two-hybrid system (Sup-
plementary Fig. S7). To our knowledge, this is the first attempt to re-
create numbers approximating physical measurements purely from
proteomics data.

If each protein only belonged to a single complex, we could
generate a definitive set by a single clustering step using socio-affinity
indices. However, it is well established that proteins can be present in
multiple complexes; a property we reasoned could be captured by an
iterative procedure. Briefly, we first used the socio-affinity indices to
form a matrix for all pairs of proteins studied, and then applied
cluster analysis to generate an initial list of complexes. We then
subtracted a penalty from the initial matrix values and repeated
clustering. Tight associations are not drastically affected by the
penalty, while looser ones are gradually eroded, and can be replaced
by others not present initially. We varied the clustering parameters
(number of iterations, clustering type, penalty values, and so on) over
a sensible range to produce 1,784 different complex sets, and
compared each to a manually curated group of known complexes
used for structural analysis14. We computed both coverage (that is,
the fraction of proteins in known complexes that we retrieved) and
accuracy (that is, the fraction of the retrieved complexes components
that match those already known; Fig. 1). The best conditions
generated a collection of 491 complexes with 83% coverage and
78% accuracy. However, inspection revealed that known complex

Figure 1 | Synopsis of the genome-wide screen for complexes and data
analysis. a, Summary of the overall experimental strategy. MIPS/SGD,
Munich Information Center for Protein Sequences/Saccharomyces Genome

Database. b, Definition and terminology used to define protein-complex
architecture.
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components could be found under clustering conditions with slightly
poorer accuracy or coverage. Therefore, we grouped similar com-
plexes from conditions with coverage and accuracy above 70%. The
resulting 5,488 different protein-complex variations were termed
‘complex isoforms’ (Fig. 1). This procedure increased the overall
coverage to 90%. The inclusion of parameters resulting in accuracy/
coverage below 70% did not increase the coverage, but significantly
decreased accuracy (data not shown).

Comparison with the complete collection of known complexes
(279 from MIPS and the literature) showed that 257 of 491 com-
plexes were entirely novel, and just 20 of those previously known
lacked novel components (Supplementary Table S2). Of the known

complexes not recovered by the procedure above, 36 were partially
found in single purifications (Supplementary Table S4) but produced
a signal too weak to be recovered automatically.

Modular organization of the cell machinery

The above procedure partitions proteins in complexes into two types:
core components that are present in most isoforms, and attachments
present in only some of them (Fig. 1). This is reminiscent of an
organization structure proposed previously that was based on a
small-scale analysis27. Complex cores ranged from 1–23 proteins in
size (average 3.1 ^ 2.5). Among the attachments, we noticed several
instances where two or more proteins were always together and
present in multiple complexes, which we call ‘modules’ (Supplemen-
tary Table S3; on average, associated with 3.3 ^ 1.6 cores).

We tested whether this organization was a reflection of biological
phenomena by first looking at transcriptional control of the complex
components. A quality controlled set of 975 differentially expressed
genes derived from microarray analyses15 showed that a large
percentage of pairs of proteins within cores were coexpressed at the

Figure 2 | Evidence supporting complex organization. Proteins in each
organization level (cores, and so on) are referred to as groups. a, Percentage
of cell cycle co-regulated genes found in the same group. b, Percentage of co-
regulated proteins in the same group expressed at the same time during the
cell cycle. c, d, are as for a, b, but for sporulation genes. e, Average dispersion
ranges for protein abundance within each group. f–h, Percentage of groups
having exactly the same subcellular localizations, cellular functions or
phylogenetic conservation, respectively. i, j, Percentage of pairs for which a
direct interaction is known from three-dimensional structures or yeast two-
hybrid experiments, respectively. Values on each bar show the total number
of counts; n.d., not determined. See Supplementary Information for further
details.

Figure 3 |Architecture andmodularity of complexes. Proteins are coloured
according to their localization20. The line attribute corresponds to socio-
affinity indices: dotted lines, 5–10; dashed lines, 10–15; plain lines,.15. Bait
proteins are shown in bold and shaded circles around groups of proteins
indicate cores andmodules. a, The exosome and the Ski module. b, Stages in
de-adenylation-dependent mRNA degradation; arrows show the order of
events. c, Two distinct families of cap-binding proteins: the nuclear CBC
(cap-binding complex) and the cytoplasmic eIF4F.
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same time during the cell cycle and sporulation (Fig. 2a–d), consistent
with the view that core components represent functional units.
Comparison with genome-wide protein abundance and localization
studies19,20 revealed that cores and modules were also more likely to
be expressed at a similar copy number (Fig. 2e) and to be co-localized
in the cell (Fig. 2f). Notably, attachments showed a greater hetero-
geneity in expression levels than expected from random, supporting
the notion that they might represent non-stoichiometric com-
ponents. Cores and modules showed the greatest degree of similarity
in terms of annotated function (Fig. 2g). When considering ortho-
logous proteins in other species, cores and modules were least likely
to be present partially: that is, if one component was present (or
absent), the others usually were also (Fig. 2h). Finally, proteins within
cores and modules were most likely to be in direct physical contact, as
assessed both by three-dimensional structures (Fig. 2i) and the yeast
two-hybrid system (Fig. 2j). Overall, the greatest degree of functional
similarity and physical association was found between proteins
within cores or modules, thus strongly supporting the model.

Examples of protein-complex architecture

The analysis was able to capture architectural details of known
complexes. Attachments often specify a particular function for a
complex. The exosome contains the complete Ski complex among its
attachments (Fig. 3a), supporting previous reports that this associ-
ation is required for cytoplasmic messenger RNA 3 0-to-5 0 decay28.
The modular architecture can also capture sequential events associ-
ated with pathways, providing a dynamic view of cellular processes.
Complex 281 captured three discrete functional stages in de-adeny-
lation-dependent RNA degradation (Fig. 3b). The core of the com-
plex binds to de-adenylated mRNAs, a module (Edc3–Dcp1–Dcp2;
known as the mRNA de-capping complex) removes the 5 0 cap, and the
attachment protein Kem1 (a 5

0
–3

0
exonuclease) digests the RNA29.

We identified 87 mutually exclusive modules in 48 complexes. Of
these, 31 appeared to be related to differences in subcellular locations
and might thus specify subtle differences in function. Among them,
two mutually exclusive cap-binding modules were in different iso-
forms of complex 64 (Fig. 3c). The first, Tif4632–Cdc33 (or eIF4F), is
cytoplasmic and essential for cap-dependent translation, while the
second is nuclear and plays a direct role in pre-mRNA processing and
export30,31.

Other architectures hinted at novel regulatory mechanisms.
Complex 437, formed around the yeast 14-3-3 protein Bmh2,

contained three metabolic enzymes involved in the heat stress
response32: Nth1, a neutral trehalase and the serine palmitoyl-
transferase complex Lcb1–Lcb2. Nth1 contained three predicted
14-3-3-binding motifs and formed a core with Bmh2. The presence
of Lcb1–Lcb2 as a module suggested the assembly of alternative
complexes around Bmh2. A common control mechanism for Nth1
and Lcb1–Lcb2 might ensure the coordinated production of two
metabolites central to the heat shock response—trehalose and
sphingolipids. Similar coordinated control of metabolic enzymes
through phosphorylation and subsequent binding to 14-3-3 is
established in plants33 and has recently been proposed for human
cells34.

A modularity matrix across functions

We derived a matrix representing a global view of the connections
between cores and modules (Fig. 4a). There was a strong tendency for
modules to combine with cores in the same functional category,
suggesting coherence in our assignment of core and module com-
position. Using the ‘guilt-by-association’ principle, it is possible to
suggest functions for modules. For example, the novel module 78
(Kre33 and Ygr145w) combined with several cores involved in
ribosome biogenesis, suggesting a role in this process. Module 115
(Sgn1 and Ygr250c) associated with the translation initiation com-
plex eIF4G, supporting previous genetic evidence for a role in RNA
metabolism35.

The degree of core–module cross-talk between functional cat-
egories (Fig. 4b) highlights many known connections, such as that
between protein synthesis, transcription and the cell cycle, in
addition to others less well established. For instance, the many
links between metabolism and transcription are supported by recent
findings of roles for metabolic enzymes in transcriptional regu-
lation36. Similarly, strong links between cell metabolism and defence
argue for a re-evaluation of yeast metabolic pathways as targets for
anti-fungal drug discovery.

Complexes as a scaffold for genetic data

Interaction networks have been used previously to study the effect of
gene knockouts, for example showing that proteins central in net-
works tend to be lethal when deleted37. More recently, studies have
systematically monitored the effects of loss of function under a series
of different conditions38,39 leading to phenotypic profiles, which are
ideal for probing protein-complex architecture (Fig. 5). We found 20

Figure 4 |Modularity of the yeast cellular machinery. a, Modularity matrix
across cellular function. The x and y axes show modules and cores,
respectively, clustered according to functional categories (1–12): cell cycle,
cell fate, cell transport, defence, energy, environment, metabolism, protein
fate, protein synthesis, transcription, signalling and unknown. Whenever a

module combines with a core the intersection is highlighted. Dotted lines
show the modularity of the complexes in Fig. 3. b, Frequency of cross-talk
between different cellular processes. The thickness of the lines between the
functional classes are proportional to the frequency of core–module
interactions between them.
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complexes with at least two proteins present in a data set of yeast
phenotypes38, of which 16 showed similar phenotypic patterns (Fig.
5d; random behaviour would predict only five). In one case, profile
similarity supported the authenticity of a novel complex (Fig. 5a). In
others, there is evidence that shared proteins play wider roles than the
individual complexes they are part of. For example, the pyruvate and
a-ketoglutarate dehydrogenase complexes show similar phenotypes,
but the lipoamide dehydrogenase subunit (Lpd1) shared between
them has other phenotypes, suggesting that it could have additional
functions (Fig. 5f). These examples highlight the promise for the
molecular machinery described here to provide a molecular rationale
for gene-to-phenotype relationships.

Discussion

This analysis represents only a snapshot of the proteome averaged
over all phases of the cell cycle. Nevertheless, this is the first screen for
complexes run to saturation and, as such, it serves as a guide for the
future exploration of protein interactions under other physiological
states. For example, we do not expect protein-complex cores to vary
extensively under different conditions, whereas we expect significant
changes to occur in attachment proteins. Extrapolation based on the
fraction of known complexes recovered suggests that there may be an
additional 300 core machines, leading to a total of 800 in yeast. In a
rough approximation, based on the ratio of gene numbers between
species, we estimate some 3,000 core human complexes.

The number of protein-complex cores is small compared to the
many cellular processes mediated by them, and shuffling functional
modules provides an efficient means to multiply functionality and
simplify temporal and spatial regulation. The modularity is highly
reminiscent of that seen elsewhere in nature, for example the
combinatorial use of amino acids to build polypeptides, or domains

to create proteins with complex biochemical properties. Modularity
might very well represent a general attribute of living matter, with
de novo invention being rare and reuse the norm.

Genome sequencing and functional genomics have provided a
parts-list and partial knowledge of how these parts are arranged in
space and time. The next challenge is to integrate these data into
rational models of entire systems. Our analysis makes some first steps
in this direction, providing a collection of individual integrative
subsystems—the machines—but also a view on how they might
coordinate cellular functions through sharing functional modules.
As such, it may be a very useful platform for systems biology and
indeed new applications in nano- and synthetic-biology that seek to
re-engineer the cellular machinery towards new processes.

METHODS
Experimental procedures. We created a library of strains with TAP-tag cassettes
at the 3 0 end of each ORF by homologous recombination. We prepared protein
extracts from exponentially growing haploid yeast strains grown in 2 l of complete
medium. Tandem-affinity purification (TAP)–mass spectrometry (MS) charac-
terization of complexes was performed as previously described8. For membrane
proteins, we used a special protocol provided as Supplementary Information.
Socio-affinity and iterative clustering to generate protein-complex sets. We
defined a socio-affinity index (A(i,j)) that quantifies the tendency for proteins to
identify each other when tagged (the spoke model, S) and to co-purify when
other proteins are tagged (the matrix model, M)40:

Aði; jÞ ¼ Si;jji¼bait þ Si;jjj¼bait þMi;j ; Si;jji¼bait ¼ log
ni;jji¼bait

f bait
i nbait f

prey
j n

prey
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Figure 5 | Phenotypic data mapped to complexes. a, Novel complex 490;
b, HOPS (homotypic fusion and vacuole protein sorting) complex41; c, AP1
adaptor complex; e, Rvs161–Rvs167 amphiphysin-like complex and the
module Gyl1–Gyp542; f, Pyruvate and a-ketoglutarate dehydrogenase
complexes43; g, Bro1–Snf7 complex. Details are as for Fig. 3. d, Phenotypic
effect of deletion of complex components38. Shaded cells indicate a growth
defect (slow growth or no growth relative to the control); those boxed in red

represent the phenotypic signature of the complex. Similarities (mean
number of phenotypes shared by components/total number of phenotypes)
were calculated for 20 complexes. Sensitivity phenotypes (1–16): paraquat,
ethanol, CdCl2, hygromycin-B, CaCl2, caffeine, rapamycin, cycloheximide,
hydroxyurea, galactose, high salt, raffinose, glycerol, lactate, benomyl and
low phosphate.
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For the spoke model terms (S), ni;jji¼bait is the number of times that protein
i retrieves j when i is tagged; f bait

i is the fraction of purifications where protein i
was bait; f

prey
j is the fraction of all retrieved preys that were protein j; nbait is the

total number of purifications (that is, baits); and n
prey
i¼bait is the number of preys

retrieved with protein i as bait. For the matrix model term (M), n
prey
i;j is the

number of times that proteins i and j are seen in purifications with baits other
than i or j; f

prey
i and f

prey
j are as above; and nprey is the number of preys observed

with a particular bait (excluding itself).

We used socio-affinity indices to populate the upper-diagonal of a pair-wise
matrix (that is, one value for each pair of proteins in the data set). We assigned a
value of zero to all pairs of proteins that had never been seen together. We
generated a first set of clusters using the OC program (G. Barton, University of
Dundee) and then subtracted a penalty from each pair-wise value associated
with the set. We then repeated the cluster generation a number of times, each
time adding any new clusters to a growing list. To generate different sets of
complexes using this procedure, we varied the number of iterations (2–10), the
socio-affinity threshold to define clusters (1–10), the penalty value (0.5, 1 or 2),
and the type of clustering (UPGMA, single or complete linkage).
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