The Eratosthenes experiment: calculating the Earth's circumference
 Eratosthenes experiment - worksheet

Before the experiment

1. To carry out the experiment, it is necessary to
a) find the exact time for the experiment (zenith or culmination time) at our location
b) determine the distance of our school from the equator
2. We find the time when the Sun is at the zenith with the help of the SunCalc web2.0 tool.

For \qquad (name of the school): Experiment date \qquad the
zenith time is \qquad

Image: SunCalc.org ©Torsten Hoffmann 2015-2023
3. To find the distance from our school to the equator, we use Google Maps (or Google Earth).

Distance (d) \qquad \rightarrow equator (along the same meridian): \qquad km.

During the experiment

Stick height (h)	$h: \ldots \ldots \ldots . . \mathrm{cm}$
Shadow length $(s):$	$s: \ldots \ldots \ldots . . \mathrm{cm}$

© EKFE Serron, used with kind permission

After the experiment

Image: NOAA Ocean Service Education/Flickr, CC BY 2.0

1. Using trigonometry, calculate the tangent of the angle θ, and then the angle (you can use a scientific calculator).
2. Then use the angle θ and the measured distance from the equator (d) to calculate the Earth's circumference (C).

3. Eratosthenes measured the circumference of the Earth as 39690 km . Calculate the percentage deviation between your measurement and that by Eratosthenes.
\qquad

Extension: Calculate the Earth's radius (r), since you now know its circumference (C), according to the equation $C=2 \pi r$.

Radius $(r)=$ \qquad

