

The Eratosthenes experiment: calculating the Earth's circumference Eratosthenes experiment – worksheet

Before the experiment

- 1. To carry out the experiment, it is necessary to
 - a) find the exact time for the experiment (zenith or culmination time) at our location
 - b) determine the distance of our school from the equator
- We find the time when the Sun is at the zenith with the help of the <u>SunCalc</u> web2.0 tool.
 For (name of the school): Experiment date _ _/_ _/20_ _ , the zenith time is _ _:_ _.

Image: SunCalc.org ©Torsten Hoffmann 2015-2023

During the experiment

© EKFE Serron, used with kind permission

After the experiment

Image: NOAA Ocean Service Education/<u>Flickr</u>, <u>CC BY 2.0</u>

- 1. Using trigonometry, calculate the tangent of the angle θ , and then the angle (you can use a scientific calculator).
- 2. Then use the angle θ and the measured distance from the equator (*d*) to calculate the Earth's circumference (*C*).

3. Eratosthenes measured the circumference of the Earth as 39 690 km. Calculate the percentage deviation between your measurement and that by Eratosthenes.

.....

Extension: Calculate the Earth's radius (*r*), since you now know its circumference (*C*), according to the equation $C=2\pi r$.

Radius (*r*) =.....